Developing and Validating an Age-Independent Equation Using Multi-Frequency Bioelectrical Impedance Analysis for Estimation of Appendicular Skeletal Muscle Mass and Establishing a Cutoff for Sarcopenia

نویسندگان

  • Yosuke Yamada
  • Miyuki Nishizawa
  • Tomoka Uchiyama
  • Yasuhiro Kasahara
  • Mikio Shindo
  • Motohiko Miyachi
  • Shigeho Tanaka
چکیده

Background: Appendicular skeletal muscle (or lean) mass (ALM) estimated using dual-energy X-ray absorptiometry (DXA) is considered to be a preferred method for sarcopenia studies. However, DXA is expensive, has limited portability, and requires radiation exposure. Bioelectrical impedance analysis (BIA) is inexpensive, easy to use, and portable; thus BIA might be useful in sarcopenia investigations. However, a large variety of models have been commercially supplied by different companies, and for most consumer products, the equations estimating ALM are not disclosed. It is therefore difficult to use these equations for research purposes. In particular, the BIA equation is often age-dependent, which leads to fundamental difficulty in examining age-related ALM loss. The aims of the current study were as follows: (1) to develop and validate an equation to estimate ALM using multi-frequency BIA (MF-BIA) based on theoretical models, and (2) to establish sarcopenia cutoff values using the equation for the Japanese population. Methods: We measured height (Ht), weight, and ALM obtained using DXA and a standing-posture 8-electrode MF-BIA (5, 50, 250 kHz) in 756 Japanese individuals aged 18 to 86-years-old (222 men and 301 women as developing equation group and 97 men and 136 women as a cross validation group). The traditional impedance index (Ht²/Z50) and impedance ratio of high and low frequency (Z250/Z₅) of hand to foot values were calculated. Multiple regression analyses were conducted with ALM as dependent variable in men and women separately. Results: We created the following equations: ALM = (0.6947 × (Ht²/Z50)) + (-55.24 × (Z250/Z₅)) + (-10,940 × (1/Z50)) + 51.33 for men, and ALM = (0.6144 × (Ht²/Z50)) + (-36.61 × (Z250/Z₅)) + (-9332 × (1/Z50)) + 37.91 for women. Additionally, we conducted measurements in 1624 men and 1368 women aged 18 to 40 years to establish sarcopenia cutoff values in the Japanese population. The mean values minus 2 standard deviations of the skeletal muscle mass index (ALM/Ht²) in these participants were 6.8 and 5.7 kg/m² in men and women, respectively. Conclusion: The current study established and validated a theoretical and age-independent equation using MF-BIA to estimate ALM and provided reasonable sarcopenia cutoff values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing and validating an age-independent equation of multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing sarcopenia cutoff

Background: Appendicular skeletal muscle (or lean) mass (ALM) estimated by dual-energy Xray absorptiometry (DXA) is considered to be a preferred method for sarcopenia studies. However, DXA is expensive, has limited portability, and requires radiation exposure. Bioelectrical impedance analysis (BIA) is inexpensive, easy to use, and portable; thus BIA might be useful in sarcopenia investigations....

متن کامل

The Performance of Five Bioelectrical Impedance Analysis Prediction Equations against Dual X-ray Absorptiometry in Estimating Appendicular Skeletal Muscle Mass in an Adult Australian Population

Appendicular skeletal muscle mass (ASM) is a diagnostic criterion for sarcopenia. Bioelectrical impedance analysis (BIA) offers a bedside approach to measure ASM but the performance of BIA prediction equations (PE) varies with ethnicities and body composition. We aim to validate the performance of five PEs in estimating ASM against estimation by dual-energy X-ray absorptiometry (DXA). We recrui...

متن کامل

Bioelectrical impedance analysis for diagnosing sarcopenia and cachexia: what are we really estimating?

As reference methods are not available for identifying low skeletal muscle mass in clinical practice, the European Group on Sarcopenia in Older People the Asian Working Group for Sarcopenia and the International Consensus for Cancer Cachexia guidelines accept bioelectrical impedance analysis (BIA) as an option for sarcopenia and cachexia assessment. Using different BIA equations, several compon...

متن کامل

Validity of using multi-frequency bioelectrical impedance analysis to measure skeletal muscle mass in preschool children

[Purposes] Although it is recommended to develop a habit of physical activities, there is no easy way to measure skeletal muscle mass in preschool children, which cause the difficulty of evaluation. The purpose of this study was to examine the validity of body composition including the skeletal muscle mass assessment using multi-frequency bioelectrical impedance analysis by comparing body fat m...

متن کامل

New diagnostic index for sarcopenia in patients with cardiovascular diseases

BACKGROUND Sarcopenia is an aging and disease-related syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength, with the risk of frailty and poor quality of life. Sarcopenia is diagnosed by a decrease in skeletal muscle index (SMI) and reduction of either handgrip strength or gait speed. However, measurement of SMI is difficult for general physicians becau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017